Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 456
Filtrar
1.
Zootaxa ; 5389(4): 401-433, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38221013

RESUMO

During this work, over 200 specimens of sea pens (Anthozoa: Octocorallia: Pennatuloidea), collected in the Mar del Plata submarine canyon and outskirts (38S, up to 3500 m depth) during 2012 and 2013 were analyzed. Of the total, about 160 were identified in seven species of Anthoptilum, Distichoptilum, Kophobelemnon, Pseudumbellula, Solumbellula and Umbellula. Three of those represent new records for the southwestern Atlantic Ocean off Argentina.


Assuntos
Antozoários , Animais , Antozoários/classificação
2.
Mar Environ Res ; 179: 105686, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35779402

RESUMO

Savalia savaglia is an ecosystem engineer listed as Near-Threatened by the IUCN, even though effective management and proper monitoring efforts to assess its distribution is still lacking. The record of large, long-established colonies can indicate the occurrence of areas with limited human local pressure. These areas may be considered as proxies for the creation of baselines of reference useful to design restoration strategies. The aim of this work was to update the distribution of S. savaglia Mediterranean populations to develop an Ecological Niche Model, highlighting potential areas for future monitoring programs. Occurrence data were collected and harmonized into a single dataset using the scientific literature and validated observations to feed a presence-only MaxEnt model, obtaining a basin-level potential distribution of the species. The results of our study can support decision-makers in marine spatial planning measures including the preservation of mesophotic environments and prioritizing areas for conservation.


Assuntos
Antozoários/crescimento & desenvolvimento , Monitoramento Biológico/métodos , Conservação dos Recursos Naturais , Animais , Antozoários/classificação , Biodiversidade , Ecossistema , Espécies em Perigo de Extinção , Humanos , Mar Mediterrâneo , Modelos Biológicos
3.
PLoS One ; 16(12): e0258725, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34910721

RESUMO

Small cryptic invertebrates (the cryptofauna) are extremely abundant, ecologically important, and species rich on coral reefs. Ongoing ocean acidification is likely to have both direct effects on the biology of these organisms, as well as indirect effects through cascading impacts on their habitats and trophic relationships. Naturally acidified habitats have been important model systems for studying these complex interactions because entire communities that are adapted to these environmental conditions can be analyzed. However, few studies have examined the cryptofauna because they are difficult to census quantitatively in topographically complex habitats and are challenging to identify. We addressed these challenges by using Autonomous Reef Monitoring Structures (ARMS) for sampling reef-dwelling invertebrates >2 mm in size and by using DNA barcoding for taxonomic identifications. The study took place in Papua New Guinea at two reef localities, each with three sites at varying distances from carbon dioxide seeps, thereby sampling across a natural gradient in acidification. We observed sharp overall declines in both the abundance (34-56%) and diversity (42-45%) of organisms in ARMS under the lowest pH conditions sampled (7.64-7.75). However, the overall abundance of gastropods increased slightly in lower pH conditions, and crustacean and gastropod families exhibited varying patterns. There was also variability in response between the two localities, despite their close proximity, as one control pH site displayed unusually low diversity and abundances for all invertebrate groups. The data illustrate the complexity of responses of the reef fauna to pH conditions, and the role of additional factors that influence the diversity and abundance of cryptic reef invertebrates.


Assuntos
Antozoários , Biodiversidade , Dióxido de Carbono/análise , Crustáceos , Gastrópodes , Água do Mar/análise , Animais , Antozoários/classificação , Antozoários/genética , Antozoários/crescimento & desenvolvimento , Recifes de Corais , Crustáceos/classificação , Crustáceos/genética , Crustáceos/crescimento & desenvolvimento , Código de Barras de DNA Taxonômico , Gastrópodes/classificação , Gastrópodes/genética , Gastrópodes/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Papua Nova Guiné
4.
PLoS One ; 16(12): e0260516, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34874982

RESUMO

Coral recruitment and successive growth are essential for post-disturbance reef recovery. As coral recruit and juvenile abundances vary across locations and under different environmental regimes, their assessment at remote, undisturbed reefs improves our understanding of early life stage dynamics of corals. Here, we first explored changes in coral juvenile abundance across three locations (lagoon, seaward west and east) at remote Aldabra Atoll (Seychelles) between 2015 and 2019, which spanned the 2015/16 global coral bleaching event. Secondly, we measured variation in coral recruit abundance on settlement tiles from two sites (lagoon, seaward reef) during August 2018-August 2019. Juvenile abundance decreased from 14.1 ± 1.2 to 7.4 ± 0.5 colonies m-2 (mean ± SE) during 2015-2016 and increased to 22.4 ± 1.2 colonies m-2 during 2016-2019. Whilst juvenile abundance increased two- to three-fold at the lagoonal and seaward western sites during 2016-2018 (from 7.7-8.3 to 17.3-24.7 colonies m-2), increases at the seaward eastern sites occurred later (2018-2019; from 5.8-6.9 to 16.6-24.1 colonies m-2). The composition of coral recruits on settlement tiles was dominated by Pocilloporidae (64-92% of all recruits), and recruit abundance was 7- to 47-fold higher inside than outside the lagoon. Recruit abundance was highest in October-December 2018 (2164 ± 453 recruits m-2) and lowest in June-August 2019 (240 ± 98 recruits m-2). As Acroporid recruit abundance corresponded to this trend, the results suggest that broadcast spawning occurred during October-December, when water temperature increased from 26 to 29°C. This study provides the first published record on coral recruit abundance in the Seychelles Outer Islands, indicates a rapid (2-3 years) increase of juvenile corals following a bleaching event, and provides crucial baseline data for future research on reef resilience and connectivity within the region.


Assuntos
Antozoários/classificação , Antozoários/crescimento & desenvolvimento , Animais , Branqueamento de Corais/prevenção & controle , Branqueamento de Corais/estatística & dados numéricos , Recifes de Corais , Aquecimento Global , Filogenia , Seicheles
5.
Zoolog Sci ; 38(5): 466-480, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34664922

RESUMO

Symbioses between invertebrates are common in the ocean although usually the diversity and specificity of their interactions are not well understood. Parazoanthidae (Cnidaria: Anthozoa: Zoantharia) is one of the most diverse zoantharian families in terms of numbers of genera and species. Species in this family are commonly associated with various other invertebrates that they utilize as their substrate. Previous studies have re-organized the taxonomy of Parazoanthidae and revealed a strong specificity between many parazoanthid species and genera and their substrates. However, our understanding of the species diversity of Parazoanthidae is far from complete, as parazoanthids are often overlooked in sampling surveys. In this study, we establish three subgenera under the genus Umimayanthus Montenegro, Sinniger, and Reimer, 2015; the nominotypical Umimayanthus, Paraumimayanthus subgen nov., and Gorgoniazoanthus subgen. nov., based on the finding of a new species, Umimayanthus (Gorgoniazoanthus) kanabou sp. nov., associated with the sea-whip gorgonian Ellisella sp. from approximately 30 m depth in shallow mesophotic coral reef communities in Oura Bay on Okinawajima Island and in Oshima Strait near Amami-Oshima Island, in the Ryukyu Islands, southern Japan. We additionally report on gastropods and crustaceans observed in association with U. kanabou, and these species are thought to potentially prey upon the zoantharians or on gorgonian polyps. Umimayanthus kanabou is phylogenetically closely related to congeneric sponge-associated Umimayanthus spp., further supporting the recent hypothesis that substrate preferences may change during the evolutionary history of zoantharians.


Assuntos
Antozoários/anatomia & histologia , Antozoários/classificação , Especificidade da Espécie , Animais , Antozoários/genética , Crustáceos , Ecossistema , Gastrópodes , Japão , Filogenia , Análise de Sequência de DNA
6.
PLoS One ; 16(9): e0257523, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34587221

RESUMO

Heterocorals represent an enigmatic group of Palaeozoic corals, known from relatively short time intervals in the Devonian and Carboniferous periods. The major differences between Heterocorallia and other Palaeozoic corals are the lack of an external theca (epitheca), lack of calices and the presence of dichotomously dividing septa-like structures. Heterocoral skeleton was presumably externally covered by the soft tissue and each branch of their skeleton has, until now, been regarded as a corallite-a skeleton of a single polyp. We investigated upper Famennian Oligophylloides from Morocco, focussing on branching processes, wall structure, previously poorly known initial growth stages and the growing tip, described here for the first time. We demonstrate that Oligophylloides shows a unique colony development not known in any group of anthozoans possessing a septate-like architecture and suggest that the previously postulated homology between true septa in hexa- and rugose corals on one hand, and Oligophylloides on the other, must be rejected. Based on the skeleton structure and branching patterns, we postulate, contrary to former ideas, that the stem and branches of heterocorals represent the skeleton of a multi-polyp colonial coral, similar to many extant octocorals. We found numerous potential homologies with octocoral skeletons (notably the Keratoisidinae within the Isididae) and, as a result, we propose the inclusion of the order Heterocorallia within the subclass Octocorallia. This suggestion requires, however, further research on the other taxa of heterocorals. We also propose some changes to the morphological terminology for the Heterocorallia.


Assuntos
Antozoários/anatomia & histologia , Animais , Antozoários/classificação , Antozoários/crescimento & desenvolvimento , Marrocos , Filogenia , Filogeografia
7.
J Struct Biol ; 213(4): 107782, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34455069

RESUMO

Despite their simple body plan, stony corals (order Scleractinia, phylum Cnidaria) can produce massive and complex exoskeletal structures in shallow, tropical and subtropical regions of Earth's oceans. The species-specific macromorphologies of their aragonite skeletons suggest a highly coordinated biomineralization process that is rooted in their genomes, and which has persisted across major climatic shifts over the past 400 + million years. The mechanisms by which stony corals produce their skeletons has been the subject of interest for at least the last 160 years, and the pace of understanding the process has increased dramatically in the past decade since the sequencing of the first coral genome in 2011. In this review, we detail what is known to date about the genetic basis of the stony coral biomineralization process, with a focus on advances in the last several years as well as ways that physical and chemical tools can be combined with genetics, and then propose next steps forward for the coming decade.


Assuntos
Antozoários/genética , Biomineralização/genética , Calcificação Fisiológica/genética , Metamorfose Biológica/genética , Animais , Antozoários/classificação , Antozoários/crescimento & desenvolvimento , Carbonato de Cálcio/metabolismo , Epigenômica/métodos , Epigenômica/tendências , Previsões , Edição de Genes/métodos , Edição de Genes/tendências , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Filogenia , Especificidade da Espécie
8.
Commun Biol ; 4(1): 679, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083722

RESUMO

Disease outbreaks have caused significant declines of keystone coral species. While forecasting disease outbreaks based on environmental factors has progressed, we still lack a comparative understanding of susceptibility among coral species that would help predict disease impacts on coral communities. The present study compared the phenotypic and microbial responses of seven Caribbean coral species with diverse life-history strategies after exposure to white plague disease. Disease incidence and lesion progression rates were evaluated over a seven-day exposure. Coral microbiomes were sampled after lesion appearance or at the end of the experiment if no disease signs appeared. A spectrum of disease susceptibility was observed among the coral species that corresponded to microbial dysbiosis. This dysbiosis promotes greater disease susceptiblity in coral perhaps through different tolerant thresholds for change in the microbiome. The different disease susceptibility can affect coral's ecological function and ultimately shape reef ecosystems.


Assuntos
Antozoários/microbiologia , Recifes de Corais , Disbiose/microbiologia , Microbiota/fisiologia , Animais , Antozoários/classificação , Bactérias/classificação , Bactérias/genética , Biodiversidade , Região do Caribe , Resistência à Doença , Ecossistema , Microbiota/genética , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA/métodos , Especificidade da Espécie
9.
Zootaxa ; 4966(2): 237244, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34186619

RESUMO

The pennatulacean genus Balticina has had a long and confusing taxonomic history, with serious nomenclatural problems that remain unresolved. Owing to disagreements about authorships and dates of publication, the names Pavonaria, Norticina and Halipteris have all been used as valid in place of Balticina, or else been regarded as its junior synonyms, even simultaneously. In this paper, after an extensive literature review, we determine the authorships and dates for all the taxa involved in accordance with the provisions of the International Code of Zoological Nomenclature and establish Balticina Gray, 1870 (=Halipteris) and Balticinidae Balss, 1910 (=Halipteridae) as the valid genus and family names, respectively, for this group of sea pens. We also propose the replacement name Rakollikeria for the preoccupied genus name Pavonaria Kölliker, 1870 (Balticinidae) (nec Schweigger, 1819 - Funiculinidae).


Assuntos
Antozoários/classificação , Animais
10.
Zootaxa ; 4966(2): 161174, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34186625

RESUMO

Two new genera and two new species of black corals are recognized in the family Aphanipathidae. The new genus Anozopathes, with the species A. hawaiiensis sp. nov. and A. palauensis, sp. nov. is characterized by a sparsely and irregularly branched corallum with relatively long branches which can be straight, curved or crooked. The genus Aphanostichopathes, with the type species Cirripathes paucispina Brook, is characterized by an unbranched corallum with a long, curved stem with loose distal coils. Mitochondrial DNA data (nad5-IGR-nad1 for Anozopathes and cox3-cox1 for Aphanostichopathes) indicate that both taxa are related to the genera Aphanipathes, Phanopathes and Acanthopathes in the family Aphanipathidae, and morphologically they both share the characteristic of having spines with distinct conical tubercles. The two new species of Anozopathes are separated primarily by differences in colony growth form and in the size and shape of the skeletal spines. Species of Aphanostichopathes are separated primarily by differences in the size and shape of the spines and by size and density of the tubercles on the surface of the spines.


Assuntos
Antozoários/anatomia & histologia , Antozoários/classificação , Animais , DNA Mitocondrial , Filogenia
11.
Zootaxa ; 4979(1): 212214, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34187004

RESUMO

In the 20 year history of Zootaxa, thirty-two papers have been published having Scleractinia as its primary focus. Twenty-four of the 32 scleractinian papers deal with Recent taxa, most of which belonging to shallow-water, reef corals. The 8 publications dealing with fossil Scleractinia include 3 monographic works, three papers discussing nomenclatural issues of individual taxa, and 2 papers deal with various aspects of select genera.


Assuntos
Antozoários/classificação , Animais , Recifes de Corais , Fósseis , Publicações Periódicas como Assunto , Filogenia
12.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33941698

RESUMO

Corals from the northern Red Sea and Gulf of Aqaba exhibit extreme thermal tolerance. To examine the underlying gene expression dynamics, we exposed Stylophora pistillata from the Gulf of Aqaba to short-term (hours) and long-term (weeks) heat stress with peak seawater temperatures ranging from their maximum monthly mean of 27 °C (baseline) to 29.5 °C, 32 °C, and 34.5 °C. Corals were sampled at the end of the heat stress as well as after a recovery period at baseline temperature. Changes in coral host and symbiotic algal gene expression were determined via RNA-sequencing (RNA-Seq). Shifts in coral microbiome composition were detected by complementary DNA (cDNA)-based 16S ribosomal RNA (rRNA) gene sequencing. In all experiments up to 32 °C, RNA-Seq revealed fast and pervasive changes in gene expression, primarily in the coral host, followed by a return to baseline gene expression for the majority of coral (>94%) and algal (>71%) genes during recovery. At 34.5 °C, large differences in gene expression were observed with minimal recovery, high coral mortality, and a microbiome dominated by opportunistic bacteria (including Vibrio species), indicating that a lethal temperature threshold had been crossed. Our results show that the S. pistillata holobiont can mount a rapid and pervasive gene expression response contingent on the amplitude and duration of the thermal stress. We propose that the transcriptomic resilience and transcriptomic acclimation observed are key to the extraordinary thermal tolerance of this holobiont and, by inference, of other northern Red Sea coral holobionts, up to seawater temperatures of at least 32 °C, that is, 5 °C above their current maximum monthly mean.


Assuntos
Aclimatação/genética , Antozoários/genética , Recifes de Corais , Resposta ao Choque Térmico/genética , Microbiota/genética , Transcriptoma/genética , Animais , Antozoários/classificação , Antozoários/microbiologia , Bactérias/classificação , Bactérias/genética , Temperatura Alta , Oceano Índico , Microbiota/fisiologia , RNA Ribossômico 16S/genética , RNA-Seq/métodos , Simbiose/genética , Fatores de Tempo
13.
Zootaxa ; 4951(1): zootaxa.4951.1.12, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33903423

RESUMO

In the 10th edition of the Systema Naturae (Linnaeus, 1758), which is the starting point of the Code for Zoological Nomenclature (ICZN Art. 3), Linnaeus named three species of the genus Alcyonium, A. arboreum, A. digitatum, and A. bursa. The genus name Alcyonium was based on the 16th and 17th century pre-Linnaean use for a diversity of marine organisms, including cnidarians, sponges, bryozoans, and algae. In the first valid presentation of the genus name, Linnaeus narrowed this down to comprise two clear cnidarians (A. arboreum, currently Paragorgia arborea, and A. digitatum, still accepted under this name and subsequently assigned as type species), but the pre-Linnaean diversity perhaps explains why the third species, A. bursa, was not recognized as a cnidarian. Linnaeus defined it as 'Alcyonium acaule pulposum subglobosum. Habitat in O. Europaea.' (translated as: Alcyonium without stalk, fleshy, semiglobular. From the European Ocean).' Attempts to fix its identity among contemporary authors at the end of the 18th and beginning of the 19th century followed a checkered course, with opinions varying from algae to tunicates and sponges.


Assuntos
Antozoários/classificação , Classificação , Animais , Briozoários , Ecossistema , Poríferos , Urocordados
14.
Zootaxa ; 4964(2): zootaxa.4964.2.5, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33903519

RESUMO

Because of the problematical identity and status of the type of the xeniid soft coral genus Cespitularia Milne-Edwards Haime, 1850, the species C. stolonifera Gohar, 1938 is revised. Examination of the type colonies has led to the establishment of the new genus Unomia gen. n. which is described and depicted. This genus features a stalk, commonly divided into branches featuring a diffuse polypiferous part consisting of distal clustered polyps and proximal individual ones on the stalk or the basal membranous part of the colonies. The sclerites are ellipsoid platelets composed of dendritic calcite rods whose tips are distinct on the surface of the platelets. Freshly collected material from Venezuelan reefs where the species is invasive was subjected to molecular phylogenetic analysis, the results of which substantiate the taxonomic assignment of the new genus under U. stolonifera comb. n. A new species, U. complanatis, from Japan and Green Island (Taiwan) is described and further illustrates the extent of the interspecific morphological variation within the genus. The results reveal that the biogeographic distribution of Unomia gen. n. includes Pacific Ocean reefs in addition to the previously reported invaded Caribbean reefs.


Assuntos
Antozoários , Distribuição Animal , Animais , Antozoários/anatomia & histologia , Antozoários/classificação , Região do Caribe , Filogenia , Especificidade da Espécie , Venezuela
15.
Zootaxa ; 4960(1): zootaxa.4960.1.1, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33903577

RESUMO

From the Schrattenkalk Formation (upper Barremian-lower Aptian) of southern Germany, western Austria, and Switzerland, new coral material is taxonomically described, belonging to 56 species from 35 genera of 21 families: Actinastrea pseudominima (Koby); A. subornata (d'Orbigny); Paretallonia bendukidzeae Sikharulidze; Eugyra (Felixigyra) crassa (de Fromentel) (new combination); E. (F.) patruliusi (Morycowa); E. (F.) picteti (Koby) (new combination); E. rariseptata Morycowa; Myriophyllia propria Sikharulidze; Thecosmilia dichotoma Koby; Clausastrea plana (de Fromentel); Complexastrea cf. lobata Geyer; Paraclausastrea chevalieri Zlatarski; P. kaufmanni (Koby); P. vorarlbergensis Baron-Szabo; ?Montlivaltia sp.; Diplogyra subplanotabulata Sikharulidze; Hydnophora styriaca (Michelin); Dermosmilia fiagdonensis Starostina Krasnov; D. cf. laxata (Étallon); D. trichotoma Eguchi; D. tuapensis Baron-Szabo Gonzalez.-León; Placophyllia grata Bugrova; Cairnsipsammia merbeleri Baron-Szabo; Morphastrea ludovici (Michelin) (emended herein); Ahrdorffia ornata (Morycowa); Astraeofungia tirnovoriana (Toula) (new combination); Actinaraea (Camptodocis) brancai (Dietrich); A. tenuis Morycowa; Rhipidomeandra bugrovae Morycowa Masse; Comoseris aptiensis Baron-Szabo; Comoseris jireceki Toula; Polyphylloseris mammillata Eguchi; Ellipsocoenia barottei (de Fromentel) (new combination); Ellipsocoenia haimei (de Fromentel) (new combination); Dimorphastrea tenustriata de Fromentel; Latomeandra cf. plicata (Goldfuss); Microphyllia gemina Eliásová; Thalamocaeniopsis stricta (Milne Edwards Haime)(new combination); Trigerastraea haldonensis (Duncan) (new combination); Heliocoenia rozkowskae Morycowa; H. vadosa (Pocta); Stylosmilia corallina Koby; Cyathophora decipiens ramosa (Hackemesser) (new combination); C. mirtschinkae Kuzmicheva; Cladophyllia clemencia de Fromentel; C. conybearei Milne Edwards Haime; C. crenata (Blanckenhorn); C. furcifera Roemer; C. rollieri (Koby); C. stutzi (Koby) (new combination); Amphiaulastrea conferta (Ogilvie); A. rarauensis (Morycowa); Heterocoenia inflexa (Eichwald); H. minima d'Orbigny; Acanthogyra aptiana Turnsek; as well as the new species Columnocoenia falkenbergensis. In addition, all the information about previously described taxa from the Schrattenkalk was evaluated with regard to their taxonomic assignment, stratigraphic and paleogeographic distribution, and paleoenvironmental relationships to faunas from other geographic areas and time periods. A total of 122 species belonging to 53 genera and 24 families are recognized from Schrattenkalk localities (western Austria, southern Germany, Switzerland). These include the taxa of both the Lower and Upper Schrattenkalk, and the intercalated Rawil Member. The Schrattenkalk coral fauna nearly exclusively consists of colonial forms of three general categories of polyp integration: cerioid-plocoid (33.6%); branching (18%); and (hydno-) meandroid-thamnasterioid (46.7%). Only two specimens were doubtfully assigned to solitary taxa. Corallite diameters range from less than 1 mm to over 20 mm and fall into three major corallite-size groups: small (up to 2.4 mm), medium (2.4-9.5 mm), and large (9.5 mm). The fauna is distinctly dominated by forms with medium-size corallites (68%), followed by forms having small-size corallites (26%). Together with the potential solitary taxa, corals with large-size corallites are of minimal importance to the total fauna. On the genus-level, the Schrattenkalk corals show closest affinities to coral assemblages of central (especially France; 55%), eastern and southern Europe (44‒49%), as well as Central America (47%). On the species-level, closest affinities are to coral assemblages of central, southeastern, and eastern Europe (16‒25.5%), as well as Central America (14%), but nearly a third of the Schrattenkalk species (30%) was restricted to the upper Barremian-lower Aptian of the Schrattenkalk Formation; this suggests that the Schrattenkalk platform sensu lato was a diversity center and a crucial reservoir for coral recruitment. The majority (86%) of the Schrattenkalk corals thrived in a shallow-water, reefal to perireefal, subtropical marine environment. In general, the Schrattenkalk coral assemblages are characteristic of moderate- to high-energy environments of the inner shelf to shore zone, having morphotype associations that typically prevail down to 10-15 m depth. In contrast, for the Upper Schrattenkalk coral fauna of central Switzerland (Hergiswil), a non-reefal paleoenvironment at a depth of several tens of meters is suggested by the morphotypes of the taxa and types of microfacies present. The corals of the Schrattenkalk Formation occurred in both photozoan (Lower and Upper Schrattenkalk members) and heterozoan (Rawil member) carbonate-producing communities. With regard to taxonomic diversity, the Schrattenkalk coral fauna is comparable to the most species-rich Upper Jurassic reef assemblages and represents the last major coral-reef development of the Mesozoic.


Assuntos
Antozoários , Animais , Antozoários/anatomia & histologia , Antozoários/classificação , Áustria , Biodiversidade , Recifes de Corais , Alemanha , Especificidade da Espécie , Suíça
16.
Curr Biol ; 31(11): 2286-2298.e8, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33811819

RESUMO

Coral reefs are the epitome of species diversity, yet the number of described scleractinian coral species, the framework-builders of coral reefs, remains moderate by comparison. DNA sequencing studies are rapidly challenging this notion by exposing a wealth of undescribed diversity, but the evolutionary and ecological significance of this diversity remains largely unclear. Here, we present an annotated genome for one of the most ubiquitous corals in the Indo-Pacific (Pachyseris speciosa) and uncover, through a comprehensive genomic and phenotypic assessment, that it comprises morphologically indistinguishable but ecologically divergent lineages. Demographic modeling based on whole-genome resequencing indicated that morphological crypsis (across micro- and macromorphological traits) was due to ancient morphological stasis rather than recent divergence. Although the lineages occur sympatrically across shallow and mesophotic habitats, extensive genotyping using a rapid molecular assay revealed differentiation of their ecological distributions. Leveraging "common garden" conditions facilitated by the overlapping distributions, we assessed physiological and quantitative skeletal traits and demonstrated concurrent phenotypic differentiation. Lastly, spawning observations of genotyped colonies highlighted the potential role of temporal reproductive isolation in the limited admixture, with consistent genomic signatures in genes related to morphogenesis and reproduction. Overall, our findings demonstrate the presence of ecologically and phenotypically divergent coral species without substantial morphological differentiation and provide new leads into the potential mechanisms facilitating such divergence. More broadly, they indicate that our current taxonomic framework for reef-building corals may be scratching the surface of the ecologically relevant diversity on coral reefs, consequently limiting our ability to protect or restore this diversity effectively.


Assuntos
Antozoários/classificação , Biodiversidade , Recifes de Corais , Clima Tropical , Animais , Antozoários/genética , Morfogênese/genética , Reprodução/genética
17.
Mol Phylogenet Evol ; 161: 107173, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33813021

RESUMO

The advent of high throughput sequencing technologies provides an opportunity to resolve phylogenetic relationships among closely related species. By incorporating hundreds to thousands of unlinked loci and single nucleotide polymorphisms (SNPs), phylogenomic analyses have a far greater potential to resolve species boundaries than approaches that rely on only a few markers. Scleractinian taxa have proved challenging to identify using traditional morphological approaches and many groups lack an adequate set of molecular markers to investigate their phylogenies. Here, we examine the potential of Restriction-site Associated DNA sequencing (RADseq) to investigate phylogenetic relationships and species limits within the scleractinian coral genus Porites. A total of 126 colonies were collected from 16 localities in the seas surrounding the Arabian Peninsula and ascribed to 12 nominal and two unknown species based on their morphology. Reference mapping was used to retrieve and compare nearly complete mitochondrial genomes, ribosomal DNA, and histone loci. De novo assembly and reference mapping to the P. lobata coral transcriptome were compared and used to obtain thousands of genome-wide loci and SNPs. A suite of species discovery methods (phylogenetic, ordination, and clustering analyses) and species delimitation approaches (coalescent-based, species tree, and Bayesian Factor delimitation) suggested the presence of eight molecular lineages, one of which included six morphospecies. Our phylogenomic approach provided a fully supported phylogeny of Porites from the Arabian Peninsula, suggesting the power of RADseq data to solve the species delineation problem in this speciose coral genus.


Assuntos
Antozoários/classificação , Antozoários/genética , Filogenia , Animais , Arábia , Teorema de Bayes , DNA Ribossômico , Genoma Mitocondrial , Análise de Sequência de DNA
18.
Mol Biol Rep ; 48(3): 2993-2999, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33675466

RESUMO

As evolutionary relationships among some coral species still remain unclear, studies on unstudied area such as the Persian Gulf (PG), as part of the western Indo-Pacific, may reveal a better understanding of phylogenetic positions and relationships of corals. In the present study, the phylogenetic relationships of eight common coral species (Favites pentagona, Platygyra daedalea, Cyphastrea microphthalma, Siderastrea savignyana, Pavona decussata, Pavona cactus, Goniopora columna, and Goniopora djiboutiensis) collected from two Iranian Islands were compared with the congeneric sequences from the Indo-Pacific (IP) using rDNA region. The result shows that some coral species which were hitherto considered as representatives of widespread species from IP are related to distinct lineages. Further, it appears that morphological convergence between the taxa leads to an underestimation of the real coral species diversity in the PG. The current study is the first attempt to investigate the phylogenetic position of coral species from the PG in comparison to their counterparts from the IP. As conservation planning hinges on the identification of species, taxonomic revisions have to be undertaken in order to obtain a more reliable picture of coral species diversity in the PG.


Assuntos
Antozoários/classificação , Antozoários/genética , Filogenia , Animais , Teorema de Bayes , Oceano Índico , Ilhas , Especificidade da Espécie
19.
Can J Microbiol ; 67(7): 548-552, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33417515

RESUMO

Vibrio coralliilyticus, a prominent pathogenic bacteria, is known to cause tissue damage in the coral Pocillopora damicornis and is attracted towards the coral via chemotaxis. However, the potential of V. coralliilyticus to infect most of the other coral hosts via chemotaxis is unknown. In this study, we used capillary assays to quantify the chemotactic response of V. coralliilyticus to the mucus of four tank-cultivated coral species (Cataphyllia jardine, Mussidae sp., Nemenzophyllia turbida, and Euphyllia ancora), and mucus from three wild coral species (Acropora sp., Porites sp., and Montipora sp.). The bacteria showed a positive chemotactic response to each coral mucus tested, with the highest response recorded to the mucus of Acropora sp. and the lowest response to the mucus of Montipora sp. A microfluidic chip was then used to assess the chemotactic preference of V. coralliilyticus to the mucus of the tank cultivated corals. Here too, the bacterium showed positive response, but with a slightly different ranking order. The strong chemotactic response of V. coralliilyticus towards the mucus tested could indicate a broader host range of V. coralliilyticus, and by extension, indicate a threat to weakened coral reefs worldwide.


Assuntos
Antozoários/microbiologia , Quimiotaxia , Vibrio/fisiologia , Animais , Antozoários/classificação , Antozoários/metabolismo , Recifes de Corais , Muco/metabolismo , Muco/microbiologia , Vibrio/genética , Vibrio/isolamento & purificação
20.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33323482

RESUMO

One of the most conserved traits in the evolution of biomineralizing organisms is the taxon-specific selection of skeletal minerals. All modern scleractinian corals are thought to produce skeletons exclusively of the calcium-carbonate polymorph aragonite. Despite strong fluctuations in ocean chemistry (notably the Mg/Ca ratio), this feature is believed to be conserved throughout the coral fossil record, spanning more than 240 million years. Only one example, the Cretaceous scleractinian coral Coelosmilia (ca. 70 to 65 Ma), is thought to have produced a calcitic skeleton. Here, we report that the modern asymbiotic scleractinian coral Paraconotrochus antarcticus living in the Southern Ocean forms a two-component carbonate skeleton, with an inner structure made of high-Mg calcite and an outer structure composed of aragonite. P. antarcticus and Cretaceous Coelosmilia skeletons share a unique microstructure indicating a close phylogenetic relationship, consistent with the early divergence of P. antarcticus within the Vacatina (i.e., Robusta) clade, estimated to have occurred in the Mesozoic (ca. 116 Mya). Scleractinian corals thus join the group of marine organisms capable of forming bimineralic structures, which requires a highly controlled biomineralization mechanism; this capability dates back at least 100 My. Due to its relatively prolonged isolation, the Southern Ocean stands out as a repository for extant marine organisms with ancient traits.


Assuntos
Exoesqueleto/metabolismo , Antozoários/metabolismo , Calcificação Fisiológica/genética , Carbonato de Cálcio/metabolismo , Exoesqueleto/anatomia & histologia , Exoesqueleto/química , Animais , Antozoários/anatomia & histologia , Antozoários/classificação , Antozoários/genética , Evolução Biológica , Carbonato de Cálcio/química , Fósseis , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...